692

KHIMIYA GETEROTSIKLICHESKIKH SOEDINENII

By saturating II with hydrogen bromide in an atmosphere of nitrogen first in the cold and then at 100° C we obtained 1-bromo-2-(β bromopropyl)cyclohexane (III), the structure of which was confirmed by its IR spectrum. Bp 99-100° C (2 mm), n_2^{20} 1.5280, d_D^{20} 1.5251. Found, %: C 38.19; H 5.70; Br 56.34; MR_D 57.09. Calculated for C $_{eH_{16}Br_2}$, %: C 38.03; H 5.63; Br 56.23; MR_D 57.03. Yield 86.3%.

The reaction of III with a threefold excess of anhydrous Na₂S in dimethylformamide at 125° C gave a 54.5% yield of I in the form of a mixture of cis- and trans-isomers. Bp 89°-90° C (20 mm), $n_{\rm D}^{\rm 20}$ 1.5090, $d_4^{\rm 20}$ 0.9783. Found, %: C 57.24; H 10.35; MR_D 47.61. Cal-

culated for C_gH_{16}S, %: C 57.22; H 10.25; MR_D 47.43. The structure of I was confirmed by its IR spectrum.

REFERENCE

1. R. L. Letsinger, J. G. Traynham, and E. Babko, J. Am. Chem. Soc., 74, 339, 1952.

10 July 1967

Institute of Organic Chemistry, Bashkir Branch, AS USSR, Ufa

NITRATION OF 3-METHYL-3H-IMIDAZO[4, 5-b]PYRIDINE

R. M. Bystrova and Yu. M. Yutilov

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 4, No. 5, p. 953, 1968

UDC 547.785.5+547.822.7+542.958.1

We have effected the direct introduction of a nitro group into the molecule of an imidazo[4,5-b]pyridine for the first time. In contrast to benzimidazole, the nitration of which takes place readily even in the cold [1], 3-methyl-3H-imidazo[4,5-b]pyridine (I) undergoes nitration with a mixture of nitric and sulfuric acids only at 140-160° C. The reaction product [yield 50%, mp 220-221° C (ethanol). Found, %: C 46.92; H 3.34; N 31.34. Calculated for $C_7H_6N_4O_2$, %: C 47.19; H 3.39; N 31.45] proved to be identical with the compound obtained from 3-amino-2-methylamino-5-nitropyridine (II) and formic acid, which shows its structure to be 3-methyl-6-nitroimidazo[4,5-b]-pyridine (II).

No other nitro derivatives apart from II were detected. Compound III was obtained by the reduction with ammonium sulfide of the product of the interaction of 2-chloro-3,5-dinitropyridine with methylamine [2]. Mp 199-200° C (water). Found, %: C 42.94; H 4.83. Calculated for $C_6H_8N_4O_2$, %: C 42.86; H 4.79.

REFERENCES

L. S. Efros, ZhOKh, 22, 1008, 1952.
A. Hunger, I. Kebrle, A. Rossi, and K. N. Hoffman, US
Patent 3004978, 1960. C. A. 56, 4771, 1962.

8 January 1968

Donetsk Branch of IREA [All-Union Scientific-Research Institute for Chemical Reagents and Particularly Pure Chemical Substances]

QUATERNIZATION OF 3-METHYL-3H-IMIDAZO[4, 5-b]PYRIDINE

Yu. M. Yutilov and R. M. Bystrova

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 4, No. 5, p. 954, 1968 UDC 547.785.5

3-Methyl-3H-imidazo[4,5-b]pyridine (I), which has two basic centers [1], reacts with alkylating agents at the N¹ atom with the formation of monoquaternary salts. The structure of such compounds as N¹alkyl(aryl, aralkyl)-N³-methylimidazolium salts (II) has been shown by the oxidation of some of them (R = CH₃, X = I; R = CH₂C₆H₅, X = = Cl) with potassium ferrocyanide in alkali at a temperature not exceeding 10° C to N¹, N³-disubstituted imidazo[4,5-b]pyridin-2-ones (III) (R = CH₃, CH₂C₆H₅). The same substances have been obtained by the methylation with dimethyl sulfate and the benzylation with dimethylphenylbenzylammonium hydroxide of 3-methylimidazo[4, 5-6]pyridin-2-ones (IV) in an alkaline medium. Compound IV was synthesized by fusing 3-amino-2-methylaminopyridine with urea at 170° C.

